GPS time difference

Hidetomo Tohmori 2016.5.14
The squared time ratio $\left(\mathrm{dt}^{\prime} / \mathrm{dt}^{\prime \prime}\right)^{2}$ between GPS
satellite and the surface of the earth is obtained as the followings.

$$
(\mathrm{iCdt})^{2}=\left(\mathrm{dS}^{\prime}\right)^{2}=(\mathrm{iCdt})^{2}+\left(\mathrm{U}^{\prime} \mathrm{dt}^{\prime}\right)^{2}
$$

$$
\mathrm{U}^{\prime 2}=2 \mathrm{GM} / \mathrm{R}^{\prime}
$$

R^{\prime} : The distance between GPS satellite and the center of the earth
R" : The radius of the earth
dt^{\prime} : The time passage on GPS satellite
dt" : The time passage on the surface of the earth
$(\mathrm{iCdt})^{2}=(\mathrm{dS})^{2}=(\mathrm{iCdt})^{2}+\left(\mathrm{U}^{2} \mathrm{dt}^{\prime \prime}\right)^{2}$
$U^{\prime 2}=2 G M / R^{2}$

$$
\begin{aligned}
\left(\mathrm{dt}^{\prime} / \mathrm{dt}^{\prime \prime}\right)^{2}= & \left(-\mathrm{C}^{2}+\mathrm{U}^{2}\right) /\left(-\mathrm{C}^{2}+\mathrm{U}^{\prime 2}\right) \\
& =\left(\mathrm{C}^{2}-\mathrm{U}^{\prime 2}\right)\left(\mathrm{C}^{2}+\mathrm{U}^{\prime 2}\right) /\left(\mathrm{C}^{4}-\mathrm{U}^{\prime 4}\right)
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{U}^{\prime 4} / \mathrm{C}^{4} \ll 1 \text { and } \mathrm{U}^{4} / \mathrm{C}^{4} \ll 1 \\
\left(\mathrm{dt}^{\prime} / \mathrm{dt}^{\prime \prime}\right)^{2}=\left(1-\left(1 / \mathrm{R}^{\prime}-1 / \mathrm{R}^{\prime}\right)\left(2 \mathrm{GM} / \mathrm{C}^{2}\right)\right) \\
=\left(1-\left(1 / \mathrm{R} "-1 / \mathrm{R}^{\prime}\right) \mathrm{Rs}\right)
\end{gathered}
$$

$$
\mathrm{Rs}=2 \mathrm{GM} / \mathrm{C}^{2}: \text { Schwarzschild radius }
$$

$$
\mathrm{R}^{\prime}=\gamma^{\prime} \mathrm{Rs}, \quad \mathrm{R} "=\gamma^{\prime \prime} \mathrm{Rs}
$$

$$
\left(\mathrm{dt}^{\prime} / \mathrm{dt}^{\prime \prime}\right)^{2}=\left(1-\left(1 / \gamma^{\prime \prime}-1 / \gamma^{\prime}\right)\right)
$$

$$
\left(1 / \gamma^{\prime \prime}-1 / \gamma^{\prime}\right) \ll 1
$$

$$
\mathrm{dt}^{\prime} / \mathrm{dt}^{\prime \prime}=1-(1 / 2)\left(1 / \gamma^{\prime \prime}-1 / \gamma^{\prime}\right)
$$

$$
\mathrm{dt}^{\prime \prime}-\mathrm{dt}^{\prime}=(1 / 2)\left(1 / \gamma^{\prime \prime}-1 / \gamma^{\prime}\right) \mathrm{dt}^{\prime \prime}
$$

$$
\mathrm{dt} \mathrm{t}^{\prime}-\mathrm{dt}^{\prime}=(1 / 2)\left(1 / \mathrm{R}^{\prime \prime}-1 / \mathrm{R}^{\prime}\right) \mathrm{Rsdt} \mathrm{t}^{\prime}
$$

The time difference ($d t^{\prime \prime}-d^{\prime}$) between the GPS satellite and the surface of the earth occurs during the time dt" on the surface.

